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Section A (54 marks)

Answer all the questions

1 (a) A curve has polar equation for where a and k are positive constants.
The points A and B on the curve correspond to and respectively.

(i) Sketch the curve. [2]

(ii) Find the area of the region enclosed by the curve and the line AB. [4]

(b) Find the exact value of  [5]

(c) (i) Find the Maclaurin series for up to the term in [4]

(ii) Use this Maclaurin series to show that, when h is small, [3]

2 (a) You are given the complex numbers and 

(i) Find the modulus and argument of each of the complex numbers w, z and [5]

(ii) Hence write in the form giving the exact values of a and b. [2]

(b) In this part of the question, n is a positive integer and q is a real number with 

(i) Express in simplified trigonometric form, and hence, or otherwise, show
that

[4]

Series C and S are defined by

(ii) Find C and S, and show that [7]
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3 Let (where )  and 

(i) Find in terms of k, and show that, when [6] 

(ii) Verify that are eigenvectors of M, and find the corresponding eigenvalues.

[4]

(iii) Show that [8]

Section B (18 marks)

Answer one question

Option 1: Hyperbolic functions

4 (i) Show that [5]

(ii) Find giving your answer in the form where a and b are rational

numbers. [5]

(iii) There are two points on the curve at which the gradient is 

Show that one of these points is and find the coordinates of the other point,

in a similar form. [8]
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Option 2: Investigation of curves

This question requires the use of a graphical calculator.

5 Cartesian coordinates and polar coordinates are set up in the usual way, with the pole
at the origin and the initial line along the positive x-axis, so that and .

A curve has polar equation where k is a constant with 

(i) Use your graphical calculator to obtain sketches of the curve in the three cases

[5]

(ii) Name the special feature which the curve has when [1]

(iii) For each of the three cases, state the number of points on the curve at which the tangent is
parallel to the y-axis. [2]

(iv) Express x in terms of k and q , and find Hence find the range of values of k for which there

are just two points on the curve where the tangent is parallel to the y-axis. [4]

The distance between the point on the curve and the point on the x-axis is d.

(v) Use the cosine rule to express in terms of k and q , and deduce that 
[4]

(vi) Hence show that, when k is large, the shape of the curve is very nearly circular. [2]

k 2 � d 2 � k 2 � 1.d 2

(1, 0)(r, q)

dx

dq
.

k � 1.

k � 1, k � 1.5 and k � 4.

k � 1.r � k � cos q,

y � r sin qx � r cos q
(r, q)(x, y)
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